互联网爱好者创业的站长之家 – 南方站长网
您的位置:首页 >科技 >

谷歌研究院推出MoveNet动作检测工具和TensorFlow.js API

时间:2021-05-18 13:47:39 | 来源:cnBeta

原标题:谷歌研究院推出MoveNet动作检测工具和TensorFlow.js API 来源:cnBeta.COM

谷歌刚刚推出了一款能够检测人体姿态的 MoveNet 模型,并且提供了相应的 TensorFlow.js 应用程序接口(API)。官方宣称 MoveNet 能够非常快速、准确地检测人体的 17 个关键节点,此外通过与 InclueHealth 的合作,该公司还将确定 MoveNet 是否能够为患者的远程护理提供帮助。

(来自:TensorFlow Blog)

据悉,MoveNet 模型可供 TF Hub 上的开发者使用,并且提供了闪电(Lighting)和雷电(Thunder)两款衍生版本。前者适用于对延迟比较敏感的关键型应用程序,而后者侧重于牺牲实效性来提升识别的准确性。

MoveNet支持快速动作/非典型姿态来追踪关键节点MoveNet支持快速动作/非典型姿态来追踪关键节点

即便如此,Lighting 和 Thunder 两款模型在现代计算机和智能手机上的运行速度,都较实时类应用的效率要更高一些。谷歌表示,这是在软件程序中得到实际应用的一个关键指标。

传统方案(上)与MoveNet(下)在高难度姿态检测上的效果对比传统方案(上)与MoveNet(下)在高难度姿态检测上的效果对比

通过与 IncludHealth 的合作,谷歌希望在传统护理应用的基础上,将 MoveNet 进一步推广到医院、保险公司和军队。

浏览器中演示运行的 MoveNet 和 TensorFlow.js 运动平衡评估效果

IncludHealth 创始人兼首席执行官 Ryan Eder 亦对这项技术的前景表示十分看好:“MoveNet 模型注入了提供规范性护理所需的速度与准确性的强大组合,尽管也有其它可互相替代的方案,但 MoveNet 具有的独特平衡性,还是开辟了下一代护理服务的更多可能。而谷歌团队在这方面的追求,也让它成为了我们一直在追求的出色合作者”。

MoveNet后处理步骤

展望未来,谷歌希望进一步扩展 Lighting 和 Tunder 模型的功能,使之能够一次追踪多人活动。此外这家科技巨头也致力于使用基准测试和相关优化来加速 TensorFlow.js 的后端处理速度。感兴趣的朋友,可移步至官网公告查看全文。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如有侵权行为,请第一时间联系我们修改或删除,多谢。

猜你喜欢