原标题:京东数科16篇论文入选国际顶会AAAI 2021 包括社交推荐等研究领域
【TechWeb】1月8日消息,近日,国际人工智能领域顶级学术会议AAAI2021(第35届AAAI)论文收录结果出炉,其中,京东数科16篇论文入选,其研究方向包含了联邦学习、对抗学习、深度学习、序列推荐、社交推荐、图神经网络、风险管理的反因果推断,以及智能城市领域的时空AI等尖端技术领域。
据了解,AAAI(Association for theAdvance of Artificial Intelligence)是人工智能领域中历史最悠久、涵盖内容最广泛的的国际顶级学术会议之一,每年都会吸引大量研究员、开发者投稿和参会。在中国计算机学会的国际学术会议排名中,AAAI被列为人工智能领域的A类顶级会议,是未来人工智能产业发展方向的重要风向标。据了解,新一届 AAAI 2021 将全程在线上举办,时间为2月2日-2月9日。
AAAI 2021联合主席Kevin Leyton-Brown在Twitter上表示,今年接受的投稿论文总数达到“惊人的高技术水平”。9034篇投稿论文中,7911篇接受评审,最终仅有1692篇论文被录取,录取率为21%。
据介绍,京东数科核心聚焦“时空AI”技术,此次也有论文入选AAAI 2021。如《Traffic Flow Forecasting with Spatial-Temporal Graph DiffusionNetwork基于时空图扩散模型的交通流量预测》,设计了一种基于异构图神经网络的深度学习模型, 分别从时间和空间上对不同区域的流量信息进行建模。相较于现有仅考虑局部空间关系的流量预测算法有一定优越性, 可以实现整个城市不同区域更加精确的预测结果。
《Robust Spatio-Temporal Purchase Prediction via Deep Meta Learning基于深度元学习的鲁棒时空销量预测》,提出了时空元学习预测(STMP)模型,用于零售行业在购物节期间的销量预测。STMP是基于元学习的时空多任务深度生成模型,采用具有少量学习能力的元学习框架来捕获销量数据的时空表示。然后,生成模块使用提取的时空表示和当前的销量数据来推断预测结果,从而助力商家基于爆发式销量的预测提前做好充分准备。
此外,在风控领域京东数科也有论文入选,《The Causal Learning of Retail Delinquency消费违约场景的因果学习》探讨了额度对用户风险的因果效应方法,通过前沿的双重机器学习,克服了现有数据中的“幸存者偏差”问题,构造出能够反映“策略——风险”因果关系的无偏估计量,促进风险管理与机器学习理论更深地结合,帮助信贷机构制定更科学的授信策略。
资料显示,目前京东数科研发及专业人员占比近70%,2020年上半年公司用于技术研发的投入占比接近16%。